Application of Alkaline Activated Persulfate and Evaluation of Treatment Residuals

Remediation of Chlorinated and Recalcitrant Compounds
The Eighth International Conference
May 21-24, 2012 Monterey, California

Authors:

Presented By: Scott Crawford (XDD, LLC)

"After ISCO, What Then?"

- Side-effects of In-Situ Chemical Oxidation (ISCO)
- Common questions:
 - Will biological treatment be possible after ISCO?
 - Will pH recover?
 - Will metals be mobilized?

Theory: Alkaline Activated Persulfate

- Alkaline Activated Persulfate (AAP):
 - Typically activation occurs at pH > 10.5
 - Auto-decomposition reaction forms two sulfate radicals:

$$S_2O_8^2 \rightarrow 2 SO_4^- \bullet$$

- Add sodium hydroxide [NaOH] to raise pH
- Overcome base soil buffering capacity and acid [H+] production during oxidant reaction

Theory: Side-Effects of ISCO

- Change in pH
- Mobilization (or precipitation) of metals caused by:
 - pH effects
 - Change in redox conditions (oxidation/reduction of metals)
- Transformation
 - Example: Cr(III) to Cr (VI), etc

Theory: Attenuation Mechanisms

- Buffering capacity:
 - Redox (electron donors/acceptors)
 - pH buffering
- Solid-surface interactions and ion exchange:
 - Negative surface charges (influenced by pH)
 - Metal oxides [MnOx], [FeOx]
- Mineral dissolution-precipitation reactions:
 - Calcite [CaCO₃], gypsum [CaSO₄], etc.
- Dilution

The Problem: Solvent Contamination

• Source Area:

- 30 x 60 feet area
- 15 feet thick
- ~1,000 CY

<u>Compound</u>	Historical Max. Conc.
	(ug/L)
1,1,1-TCA	101,000
PCE	20,000
1,4-Dioxane	3,000

Located beneath active manufacturing plant

• Treatment Goal:

- Reduce groundwater to below 1 mg/L in source
- Goal based on protection of downgradient receptor

Site Map

The Solution: ISCO Treatment

- Selected AAP for safety reasons
 - Greater in-situ stability
 - Reduced potential for gas evolution
- Evaluated AAP on bench scale
 - Soil buffering capacity
 - 2 to 4 g NaOH/Kg Soil
 - ❖ NaOH Mass < Soil Buffering Capacity + acid generated by persulfate reaction</p>
- Two injection events

- ❖ 31,000 Kg Klozur (sodium persulfate)
- 15,300 Kg Sodium Hydroxide (NaOH)
- NaOH dose was equivalent to total NaOH demand

ISCO Equipment/Construction

Engineered small, mobile system

Multiple wells injected into simultaneously

Long Term Monitoring Results-VOCs

- 2-3 Orders Magnitude Reduction
- Target compounds remain below 1 mg/L

(as of Oct 2010 sampling round)

What About the Treatment Residuals?

- Added significant amount of NaOH:
 - pH...will it recover?
- Persulfate → Sulfate:
 - Sulfate formed, will it attenuate?
- Metals:
 - Mobilization of As, Cr and other metals?

Aquifer pH: Treatment Area 2008

Average ORP: Pre-ISCO = -90 mV; During ISCO = -234 mV;

Post ISCO: = -150 mV

Aquifer pH: Treatment Area 2010

Post ISCO ORP (2010) = -117 mV

Residual Effects: Metals (2008)

- Significant but temporary increases in Al, Cr, and As
- Levels trending downwards within target area
- Consistent with pH-Eh diagrams

Residual Effects: Metals (2010)

- Cr and As attenuated
- Al appears to be slightly increasing as of 2010, but still low

All Concentrations in ug/L

Residual Effects: Metals (2008)

- Precipitation of Fe and Mn occurred
- No significant rebound through 2008
- Behavior is consistent with pH-Eh diagrams

All Concentrations in ug/L

Residual Effects: Metals (2010)

- Iron is rebounding
 - this is also happening downgradient...
 - More on that later...
- Manganese still low

All Concentrations in ug/L

Have Impacts Migrated Downgradient?

Downgradient Water Parameters (2008, One Year After Treatment)

*Comparison of upgradient wells (left of dashed line) to downgradient wells (right of dashed line), one year after ISCO

All Concentrations in ug/L

Have Impacts Migrated? (2-3 Years Later)

Sulfate Concentrations After Treatment

2008 – One Year After*

All Concentrations in ug/L

- Sulfate flushed out of target area
- Sulfate arrives at PZ-283 in 2010
- If Sulfate migrated...did Arsenic and Chromium too?

^{*}Comparison of upgradient wells (left of dashed line) to downgradient wells (right of dashed line), 1 and 3 years after ISCO treatment

Downgradient Water Parameters (2010, 3 Years After Treatment)

*Comparison of upgradient wells (left of dashed line) to downgradient wells (right of dashed line), one year after ISCO

All Concentrations in ug/L

Downgradient Effects?

• <u>pH</u>:

- pH remains elevated in source area, but no impact downgradient
- Mass balance on NaOH buffer vs. soil buffering capacity
 - Buffering capacity approximately equal to dosage applied
 - No downgradient effect, but pH in treatment area will take long time to recover

Metals:

- As, Cr, etc. were elevated in source after treatment, but attenuated
- No evidence of migration of As, Cr out of source area
- Naturally occurring dissolved Fe, Mn precipitated in source area

Sulfate Migration:

- Interesting spike in iron concentrations, coinciding with sulfate arrival downgradient
- May enhance anaerobic biodegradation (not evaluated yet)

Conclusions

Treatment successful for solvent contamination

Metals Migration:

- No evidence of metals migration beyond treated areas
- NaOH dosage balanced with buffering capacity, pH not impacted downgradient

Sulfate Migration:

- May enhance anaerobic biodegradation
- Secondary MCLs
- Site-specific, attenuation reactions
 - In this case, metals behaved as expected (Eh-pH)
 - ISCO bench testing can help

Thank You!

For More Information
Please Contact:

Scott Crawford, XDD

Tel: (603) 778-1100

Cell: (603) 321-6985

crawford@xdd-llc.com

