CHEMOX-ENHANCED REDUCTIVE DECHLORINATION

BY

Edward Droste, Michael Marley, Jaydeep Parikh and Annette Lee

XPERT DESIGN AND DIAGNOSTICS, LLC

22 Marin Way, Stratham, NH 03885 Tel: (603) 778-1100 Fax: (603) 778-2121 http://www.XDD-LLC.com

Paul Dinardo, Bernard Woody
UNITED TECHNOLOGIES CORPORATION, Hartford, CT

and

George Hoag, Pradeep Chheda
Environmental Research Institute
UNIVERSITY OF CONNECTICUT, Storrs, CT

Presentation Outline

- Technology Overview
- Pilot Study Overview
- Post-Injection Monitoring Results
 - Concentration Contours
 - Chloride Mass Balance Results
 - Additional Investigation Results
- Conclusion

Technology Overview

- Sequential/simultaneous injection of persulfate (reduce SOD) and permanganate (destroy VOCs)
- Commonly Na₂S₂O₈ and KMnO₄
- Advantages:
 - Reduced clogging potential for high SOD application
 - Reduced cost over permanganate alone (SOD)
 - Destruction of chlorinated & petroleum hydrocarbons feasible
 - Potential enhanced biodegradation via persulfate injection

Na₂S₂O₈ - Enhanced Biodegradation

Na₂S₂O₈ injection may enhance biodegradation by one or more of the following:

- Making the CVOCs more bioavailable by reducing sorption sites
- Providing simple organic carbon (a food source) for bacteria by degrading naturally occurring complex organic carbon
- Enhancing sulfate-reducing bacteria growth

Test Site

- Manufacturing facility historically used TCE
- Hydrogeology:
 - Water bearing strata: gravely-sand, semi-confined, 8-10 ft thick, 5 ft/day velocity
 - Residual DNAPL in silt lenses and at the aquitard interface
 - Main contaminants: TCE, cis-DCE, VC
 - Generally reducing groundwater conditions (ORP: 0 to –150 mV)

Oxidant Injection Pilot Test

- Laboratory treatability studies
- Source area characterization: 3-D, high resolution
- Pilot test design:
 - Two treatment zones ~160 ft x 175 ft x 10 ft each
 - Two rows of injection wells (total of 12 locations and 16 wells)
 - Eight rows of nested monitoring points (total of 36 locations and 80 points)
 - Chemox delivery system

Pilot Test Operational Overview

INJECTION	Na ₂ S ₂ O ₈ Injection	KMnO ₄ Injection
Injection Duration, days	64	172
Monitoring Duration, days	during injection+7 post-injection events	
Oxidant Quantity, Kg	8,200	45,000
Volume of Water, L	4,300,000	4,400,000
Injection Flow Rate/Location, Lpm	4.33	1.57, 1.89 and 3.78
Injection Concentration, g/L	2	5 and 10
Geochemistry Monitoring	pH, ORP, Conductivity and Temperature	
Chemical Parameter Monitoring	VOCs, Cl ⁻ , residual Na ₂ S ₂ O ₈ , residual KMnO ₄ , Na ⁺ , SO ₄ ²⁻ , K ⁺ and Mn (dissolved and total)	

Post Injection Monitoring

- 7 post-injection monitoring events: quarterly August 1999 - December 2000 + June 2001
- Significant increase in daughter product concentration.
- Increased daughter product:parent compound ratios: cis-DCE:TCE, VC:cis-DCE
- Reductive Dechlorination Evaluation:
 - 3-D interpolation using GMS® developed for TCE, cis-DCE, VC, Cl⁻ and ORP
 - Molar ratio of cis-DCE:TCE, VC:cis-DCE
 - Chloride mass balance
 - Additional investigation sampling

TCE Contours

cis-DCE Contours

VC Contours

CI Contours

ORP Contours

ORP values at average aquitard depth

Chloride Mass Balance

- Cl⁻ is the end product of CVOC mineralization & reductive dechlorination
- Cl⁻ mass balance after adjusting for influx and outflux
- ~2,060 Kg of eq. TCE degraded from Aug-99 Sept-00

Duration	Cl- produced (Kg)	Equivalent TCE (Kg)
Dec-98 to Aug-99	660	815
Aug-99 to Dec-99	217	267
Dec-99 to Mar-00	903	1115
Mar-00 to Jun-00	0	0
Jun-00 to Sept-00	549	678

Additional Investigation Results

Location	H ₂ , nM/L	SO ₄ ² -, mg/L	Field Fe ²⁺ , mg/L
CW13	1.55	430	1.4
CW15	1.36	156	0.3
CW16	1.69	277	1.2

• PLFA:

- Gram Negative type of bacteria (including sulfatereducing bacteria) present at CW13 and CW15
- Sulfate-reducing bacteria biomarkers present at CW13 and CW16

Conclusion

Enhanced reductive dechlorination was observed following chemox activities

- Cl⁻ mass balance and daughter/parent ratios
- Making the CVOCs more bioavailable by reducing sorption sites
- Providing simple organic carbon (a food source)
 for bacteria by degrading naturally occurring
 complex organic carbon
- Enhancing sulfate reducing bacteria growth

